Begin typing your search above and press return to search. Press Esc to cancel.

Zufallszahl


Zufallszahl

Als Zufallszahl wird das Ergebnis von speziellen Zufallsexperimenten bezeichnet.

Zufallszahlen werden bei verschiedenen Methoden der Statistik benötigt, z. B. bei der Auswahl einer Stichprobe aus einer Grundgesamtheit, bei der zufälligen Verteilung von Versuchstieren auf verschiedene Versuchsgruppen (Randomisierung), bei der Monte-Carlo-Simulation u. a.

Zur Erzeugung von Zufallszahlen gibt es verschiedene Verfahren. Diese werden als Zufallszahlengeneratoren bezeichnet. Ein entscheidendes Kriterium für Zufallszahlen ist, ob das Ergebnis der Generierung als unabhängig von früheren Ergebnissen angesehen werden kann oder nicht.

Echte Zufallszahlen und Pseudozufallszahlen

Echte Zufallszahlen werden mithilfe physikalischer Phänomene erzeugt: Münzwurf, Würfel, Roulette, Rauschen elektronischer Bauelemente, radioaktive Zerfallsprozesse oder quantenphysikalische Effekte. Diese Verfahren nennen sich physikalische Zufallszahlengeneratoren, sind jedoch zeitlich oder technisch recht aufwendig.

In der realen Anwendung genügt häufig eine Folge von Pseudozufallszahlen, das sind scheinbar zufällige Zahlen, die nach einem festen, reproduzierbaren Verfahren erzeugt werden. Sie sind also nicht zufällig, da sie sich vorhersagen lassen, haben aber ähnliche statistische Eigenschaften (gleichmäßige Häufigkeitsverteilung, geringe Korrelation) wie echte Zufallszahlenfolgen. Solche Verfahren nennt man Pseudozufallszahlengeneratoren.

Für andere Zwecke, z. B. bei der Erzeugung kryptographischer Schlüssel, werden hingegen echte Zufallszahlen benötigt.

Standardzufallszahlen

Standardzufallszahlen sollen als Realisationen unabhängiger, auf gleichverteilter Zufallsvariablen gelten können.

Ein Verfahren zur Erzeugung solcher Sequenzen heißt Standardzufallszahlengenerator. Solche Generatoren sollten schnell und die erzeugten Folgen auf unproblematische Weise leicht reproduzierbar sein. Meistens handelt es sich bei Standardzufallszahlengeneratoren um Kongruenzgeneratoren.

Zufallszahlen mit vorgegebener Verteilung

Die Inversionsmethode ermöglicht zumindest prinzipiell die Erzeugung von Zufallszahlen aus jeder univariaten Wahrscheinlichkeitsverteilung mit gegebener Verteilungsfunktion durch eine geeignete Transformation von Standardzufallszahlen. Dazu werden Standardzufallszahlen mit der verallgemeinerten inversen Verteilungsfunktion in die Zufallszahlen

transformiert. Die resultierenden Zufallszahlen können dann als Realisationen unabhängig und identisch verteilter Zufallsvariablen mit der Verteilungsfunktion gelten.

Es wurden verschiedene Ansätze zur Vereinfachung oder Beschleunigung der Zufallszahlenerzeugung für spezielle Verteilungen oder Verteilungsfamilien entwickelt, z. B. die Verwerfungsmethode, die Kompositionsmethode und verschiedene direkte Verfahren.[1]

Einzelnachweise

  1. Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, S. 208–213.

Siehe auch

Weblinks

Fragen zum Thema?